

Frequency coordination and licensing procedures for Future Rail Mobile Communication Services (FRMCS) in the 1900–1910 MHz band

Radiocommunications Assignment and Licensing Instruction

RALI: MS 51

DATE OF EFFECT: TBD

Amendment history

Date	Comments
Dec 2025	Initial release.

Suggestions for improvements to Radiocommunications Assignment and Licensing Instruction MS 51 may be addressed to:

The Manager, Spectrum Planning Section
Australian Communications and Media Authority
PO Box 78
Belconnen ACT 2616

or by email to: freqplan@acma.gov.au.

Please notify the ACMA of any inaccuracy or ambiguity found in this RALI, so that it can be investigated and appropriate action taken.

Contents

1	Introduction	1
1.1	Purpose	1
1.2	Scope	1
1.2.1	Basic principles	2
1.3	Overview of coordination procedures	2
1.4	Overview of licensing	3
2	Potential interference scenarios	5
2.1	Potential FRMCS interference into other FRMCS networks	5
2.2	Coexistence between FRMCS and BWA systems	5
2.2.1	Potential FRMCS transmitter interference into BWA receivers	5
2.2.2	BWA transmitter interference into FRMCS receivers	6
2.3	Coexistence between FRMCS and fixed links	6
2.3.1	Potential FRMCS transmitter interference into fixed link receivers	6
2.3.2	Fixed link transmitter into FRMCS receiver	7
2.4	Coexistence between FRMCS and devices operated under a spectrum licence or PTS apparatus licence in the 2 GHz band	7
2.5	Coexistence between FRMCS and devices operated under a spectrum licence or PTS licence in the 1800 GHz band	8
2.6	DECT services in the 1880–1900 MHz band	9
2.7	SR WBB services in the 1900–1920 MHz band	9
3	FRMCS coordination procedures	10
3.1	Further options if coordination is unsuccessful	10
3.2	Assessing BWA interference into FRMCS	10
3.2.1	Interference from a proposed BWA transmitter into an FRMCS receiver	10
3.2.2	Interference from a BWA transmitter licensed before 1 January 2026 into a proposed FRMCS receiver	11
3.3	Assessing FRMCS interference into fixed links	11
3.3.1	Interference from a proposed FRMCS transmitter into a fixed link receiver licensed before 1 January 2026	11

3.3.2	Interference from an existing FRMCS transmitter into a proposed fixed link receiver licensed on or after 1 January 2026	12
3.4	Assessing interference from fixed links into FRMCS	13
3.4.1	Interference from a proposed fixed link transmitter into an FRMCS receiver	13
3.4.2	Interference from a fixed link transmitter licensed before 1 January 2026 into a proposed FRMCS receiver	13
3.5	Assessing adjacent channel interference from an FRMCS transmitter into a 2 GHz band spectrum licensed or PTS receiver	14
3.6	Site engineering aspects	15
4	Licensing	16
4.1	Overview of licensing	16
4.2	Licence conditions	16
4.3	Access to spectrum	16
4.4	Maximum transmitter power	17
4.5	Use of spectrum by rail services and non-rail services	17
4.6	Assigning Spectrum	17
4.7	Advisory notes	18
4.8	Special conditions	18
4.9	Spectrum access records	18
5	Exceptions	20
6	RALI Authorisation	21
Glossary of terms		22
Appendix A: Railway lines for FRMCS in the 1900–1910 MHz band		23
Appendix B: Protection criteria for FRMCS receivers in the 1900–1910 MHz band		24
B.1	Protection of FRMCS from a non-FRMCS transmitter	24
Appendix C: Protection criteria for fixed point-to-point receivers in the 1.8 and 2.1 GHz bands		25

Appendix D: Protection ratio correction factors	26
Appendix E: FRMCS service model	28
E.1 Equipment types	28
E.2 Deployment model and general equipment characteristics	28
E.3 Emission masks	29

1 Introduction

1.1 Purpose

The purpose of this Radiocommunications Assignment and Licensing Instruction (RALI) is to provide information about, and describe the necessary steps for, the frequency coordination and licensing of Future Railway Mobile Communication System (FRMCS) in the 1900-1910 MHz band.

The information in this document reflects the ACMA's statement of current policy in relation to frequency coordination and apparatus licensing of FRMCS in the 1900-1910 MHz band. In making decisions, accredited frequency assigners and the ACMA's officers should take all relevant factors into account and decide each case on its merits. Issues relating to this document that appear to fall outside the enunciated policy should be referred to:

The Manager, Spectrum Planning Section
Australian Communications and Media Authority
PO Box 78
Belconnen ACT 2616

or by email to: freqplan@acma.gov.au.

1.2 Scope

This RALI details the steps necessary for frequency coordination and licensing of proposed FRMCS. It covers coexistence arrangements between proposed FRMCS and other previously licensed FRMCS; and between FRMCS and other radiocommunications services identified in Table 1 that share the same or adjacent frequency bands.

The RALI provides instructions that may be used by ACMA assigners and Accredited Persons when assessing whether proposed FRMCS will cause (or receive) unacceptable interference to (or from):

- > point-to-point fixed links (fixed links);
- > point-to-multipoint (BWA) systems;
- > spectrum licensed services in adjacent frequency bands;
- > Public telecommunications services (PTS) in adjacent frequency bands;

This RALI also identifies other services for which no specific coordination criteria have been developed, due to the nature of the service and the potential for interference being low.

Coordination calculations should be performed to assess potential interference to and from FRMCS base stations, as required. Coordination of FRMCS cab radios and low powered remote stations is not required as they operate on a 'no interference no protection' (NINP) basis. Interference protection and requirements to protect other services are based upon the assumption that mobile and base station deployments conform to the deployment model described at Appendix E.

This RALI does not cover all matters relevant to the coordination of FRMCS transmitters and receivers with other services and it should be read in conjunction with other applicable RALIs and BOPs.

1.2.1 Basic principles

The basic principles for coordination and operation of FRMCS in the 1.9 GHz band are that:

- > An FRMCS system comprises of one base station and any number of remote or mobile stations communicating with those base stations, and is used to provide safety and control communications for railway services.
- > FRMCS base stations are authorised under a PTS apparatus licence and FRMCS mobile/remote stations are authorised by the [Radiocommunications \(Cellular Mobile Telecommunications Devices\) Class Licence 2024](#)
- > PTS apparatus licences may only be issued in the frequency range 1900-1910 MHz for FRMCS base stations that are located within 100m of a railway line defined in Appendix A;
- > FRMCS base station transmitters must comply with the emission limits set out in Appendix E of this RALI;
- > FRMCS licences will only be issued with the support of the Australian Rail Association (ARA) to ensure that they are limited to use by the rail-sector, and to facilitate management of coexistence within the rail-sector;
- > the operation of apparatus licensed FRMCS must not cause unacceptable interference to, or claim protection from, previously licensed FRMCS or other licensed co-primary services as defined in the Australian Radiofrequency Spectrum Plan;
- > an ACMA frequency assigner or Accredited Person will conduct the frequency coordination of FRMCS in accordance with this RALI. To assess the feasibility of the proposed FRMCS, applicants may undertake coordination studies in accordance with the procedures in this RALI prior to submitting the application. The results of such studies may be included with the licence application.
- > The coordination arrangements in this RALI give effect to a 'reservation' for FRMCS in the 1900-1910 MHz frequency range along the railway lines described in Appendix A.

1.3 Overview of coordination procedures

Information on FRMCS equipment characteristics and an assumed deployment model are provided in Appendix E. The deployment model provides assumed characteristics for the base station and for related mobile stations. This RALI requires that coordination calculations be performed to assess potential interference to and from the FRMCS base station.

Section 2 of this RALI describes a range of potential co-channel and adjacent channel interference scenarios that must be considered when making assessments of potential interference.

Section 3 provides a procedure for making assessments of potential interference. Appendices B, C, D and E provide the applicable protection criteria to be used in performing the assessments.

A summary of potential interference scenarios and the applicable coordination procedure is given in Table 1. Not all interference scenarios are relevant for all deployments.

Table 1: Summary of potential interference scenarios.

Interference scenarios	Coordination procedure
FRMCS into FRMCS (see section 2.1)	No procedure required
FRMCS Tx into BWA Rx (see section 2.2.1)	For BWA Rx licensed before 1 Jan 2026: RALI FX19 For BWA Rx licensed on or after 1 Jan 2026: No procedure required (coexistence addressed via BWA Tx to FRMCS Rx coordination in section 3.2.1)
BWA Tx into FRMCS Rx (see section 2.2.2)	For BWA Tx licensed before 1 Jan 2026: section 3.2.2. For BWA Tx licensed on or after 1 Jan 2026: section 3.2.1.
FRMCS Tx into fixed link Rx (see section 2.3.1)	For fixed link Rx licensed before 1 Jan 2026: section 3.3.1 of this RALI For fixed link Rx licensed on or after 1 Jan 2026: section 3.3.2
Fixed link Tx into FRMCS Rx (see section 2.3.2)	For fixed link Tx licensed before 1 Jan 2026: section 3.4.2 of this RALI For fixed link Rx licensed on or after 1 Jan 2026: section 3.4.1.
FRMCS Tx into 2 GHz band spectrum licensed and PTS Rx (see section 2.4)	Section 3.5 of this RALI
Spectrum licensed and PTS Tx into FRMCS Rx (see section 2.5)	No procedure required
FRMCS and class licensed DECT services (see section 2.6)	No procedure required
FRMCS and apparatus licensed short-range wireless broadband (SR WBB) services (see section 2.7)	See RALI FX19

1.4 Overview of licensing

PTS apparatus licences are used to authorise the operation of PTS systems that comprises two or more land stations (i.e. base stations). The

[Radiocommunications \(Cellular Mobile Telecommunications Devices\) Class](#)

[Licence 2024](#) authorises mobile stations to communicate with the land stations authorised under the PTS apparatus licence, under a NINP basis.

PTS licences will only be issued for FRMCS in the 1900–1910 MHz band to applicants that have been approved by the ARA (see section 4).

In the 1900–1910 MHz band channel widths of 5 and 10 MHz apply.

Additional information about the licensing arrangements is provided in section 4 of this RALI.

2 Potential interference scenarios

2.1 Potential FRMCS interference into other FRMCS networks

FRMCS will operate within Australia in the 1900-1910 MHz band using Time Division Duplex (TDD) technologies.

FRMCS stations operating in the 1900-1910 MHz band have the potential to cause interference to other FRMCS stations. In most situations it is believed that this potential interference scenario will be adequately addressed through the nature of the deployment of FRMCS networks (i.e. along rail corridors) and the restriction of issuing licences to rail operators by the ARA. Therefore, no coordination details have been provided in Section 3 of this RALI. We encourage operators to consider and liaise with other rail operators when deploying their network.

Operators should consider potential interference between disparate FRMCS networks prior to applying for a licence. Mitigation measures should be considered including, power, antenna discrimination, filtering, shielding and synchronisation¹.

In the event that interference does occur, the ACMA encourages licensees to cooperate and, where necessary, compromise to find a resolution.

If the matter cannot be resolved between affected parties, we note that FRMCS base stations operate on a NINP basis with respect to other FRMCS base stations (see special conditions in section 4.8). FRMCS mobile stations, which are authorised under the [Radiocommunications \(Cellular Mobile Telecommunications Devices\) Class Licence 2024](#), also operate on a NINP basis. FRMCS licensees will therefore be required to rectify any interference issues into other FRMCS base station receivers.

2.2 Coexistence between FRMCS and BWA systems

Broadband wireless access (BWA) services that use time division duplexing (TDD) operate in defined regional and remote areas in the 1900-1920 MHz band. Arrangements for BWA services are detailed in RALI FX19.

2.2.1 Potential FRMCS transmitter interference into BWA receivers

An FRMCS base station transmitter operating in the 1900-1910 MHz band has the potential to cause interference to a BWA base station receiver. For BWA receivers licensed before 1 January 2026, protection criteria are provided in Appendix B of RALI FX 19. For BWA receivers licensed on or after 1 January 2026, in most situations it is believed that this scenario will be adequately addressed through the coordination of BWA base station transmitters against

¹ Synchronisation options are outlined in Table 11.1.1-1 of ETSI TS 138 213, *Rail Telecommunications (RT); Future Railway Mobile Communication System (FRMCS); Radio performance aspects for*

FRMCS base station receivers. Therefore, no coordination procedures have been prescribed in Section 3 of this RALI.

However, in the event that interference does occur, the ACMA encourages licensees to cooperate and, where necessary, compromise to find a resolution. If the matter cannot be resolved between affected parties, we note that BWA services (licensed on or after 1 January 2026) within 160 km for co-channel and 15 km for adjacent channel of a railway line operate on a NINP basis with regards to FRMCS base stations – see section 4.8. In these scenarios, the BWA licensee will therefore be required to rectify any interference issues into BWA base station receivers caused by a FRMCS transmitters.

2.2.2 BWA transmitter interference into FRMCS receivers

BWA base station transmitters operating in the 1900-1920 MHz band have the potential to cause interference to FRMCS base station receivers operating in the 1900-1910 MHz band. Frequency coordination procedures outlined in Section 3.2 are to be used for assessing whether:

- > a proposed BWA transmitter will cause unacceptable interference to a FRMCS receiver; and
- > a proposed FRMCS receiver will receive unacceptable interference from an existing BWA transmitter licensed before 1 January 2026.

2.3 Coexistence between FRMCS and fixed links

Fixed links operate in and adjacent to the 1900-1910 MHz band in accordance with the arrangements in RALI FX3.

2.3.1 Potential FRMCS transmitter interference into fixed link receivers

A consequence of the FRMCS deployment model is that FRMCS base station transmitters are the station type that is most likely to interfere with incumbent fixed link receivers.

For the 1900–1910 MHz band, potential interference between FRMCS base transmitters and 1.8 GHz and the 2.1 GHz band fixed link receivers must be assessed.

For fixed link receivers licensed before January 1 2026, frequency coordination procedures for assessing whether a proposed new FRMCS base station transmitter will cause unacceptable interference to existing fixed link receivers must be performed according to the frequency coordination process outlined in section 3.3.1.

For fixed link receivers licensed on or after 1 January 2026, in most situations interference from an FRMCS transmitter into a proposed fixed link receiver will be adequately addressed through the coordination of the proposed fixed link transmitter and FRMCS base station receiver. Therefore, a proposed FRMCS base station transmitter is not required to be coordinated with existing fixed link receivers licensed on or after 1 January 2026. While we expect coordination to not be necessary, section 3.3.2 provides a procedure for assessing the risk of interference into a proposed fixed link receiver occurring.

In the event that interference does occur, the ACMA encourages licensees to cooperate and, where necessary, compromise to find a resolution. If the matter

cannot be resolved between affected parties, we note that fixed links within 160 km for co-channel and 60 km for adjacent channel of a railway line operate on a NINP basis with regards to FRMCS base stations – see section 4.8. In these scenarios, the fixed link licensee will therefore be required to rectify any interference issues into fixed link receivers caused by a FRMCS transmitter.

2.3.2 Fixed link transmitter into FRMCS receiver

Potential interference from fixed link transmitters into FRMCS base station receivers must be assessed. The frequency coordination procedures outlined in Section 3.4 should be used for assessing whether:

- a proposed fixed transmitter will cause unacceptable interference to a FRMCS receiver; and
- a proposed FRMCS receiver will receive unacceptable interference from an existing fixed link transmitter that was licensed before 1 January 2026.

2.4 Coexistence between FRMCS and devices operated under a spectrum licence or PTS apparatus licence in the 2 GHz band

Interference consideration between FRMCS and 2 GHz spectrum licensed and PTS apparatus licensed services is limited to adjacent channel cases in the same area only, where FRMCS has the potential to cause interference to, and receive interference from, 2 GHz services. These 2 GHz services employ frequency division duplexing (FDD), with 1920–1980 MHz being the base receive segment.

There are four possible interference scenarios:

- > FRMCS base station transmitter interference into upper-adjacent spectrum licensed or PTS base station receivers.
- > FRMCS mobile/remote station transmitter interference into upper adjacent-spectrum licensed or PTS base station receivers.
- > Spectrum licensed or PTS mobile station transmitter interference into lower-adjacent FRMCS base station receivers.
- > Spectrum licensed or PTS mobile station transmitter interference into lower-adjacent FRMCS remote station receivers.

The first of these, involving FRMCS base station transmitters, is the dominant interference scenarios and will need to be assessed when assigning new FRMCS services. Due to the difference in transmitter power between FRMCS base stations and remote stations, assessment of the first scenario alone is normally considered sufficient to manage interference. However, in some cases where remote stations are geographically near a 2 GHz spectrum licensed or PTS base station receiver, interference may need to be managed. If there is doubt, the procedure in section 3.5 of this RALI, modified to account for the actual operating characteristics and likely locations of the FRMCS remote station/s, should be used to assess interference potential when the FRMCS transmitter is within 70 km of a spectrum licensed or PTS base station receiver.

Devices that operate under the [Radiocommunications \(Cellular Mobile Telecommunications Devices\) Class Licence 2024](#) (i.e. mobile PTS stations) and devices exempt from registration under 2 GHz band spectrum licences (i.e. spectrum licensed mobile stations) operate on NINP basis. This means that in the event interference is caused by a remote station transmitter, it is the responsibility of the licensee authorised to operate the remote station to resolve the issue.

2.5 Coexistence between FRMCS and devices operated under a spectrum licence or PTS licence in the 1800 GHz band

Interference consideration between FRMCS and 1.8 GHz spectrum licensed and PTS apparatus licensed services is limited to adjacent channel cases in the same area only, where FRMCS has the potential to cause interference to, and receive interference from, 1.8 GHz services. These 1.8 GHz services employ frequency division duplexing (FDD), with 1805 – 1800 MHz being the base transmit segment.

There are four possible interference scenarios:

- > FRMCS base station transmitter interference into lower-adjacent spectrum licensed or PTS mobile station receiver.
- > FRMCS mobile/remote station transmitter interference into lower-adjacent spectrum licensed or PTS mobile station receiver.
- > Spectrum licensed or PTS base station transmitter interference into upper-adjacent FRMCS base station receiver.
- > Spectrum licensed or PTS base station transmitter interference into upper-adjacent FRMCS mobile/remote station receiver.

The third of these, involving interference spectrum licenced or PTS base station transmitters, is the dominant interference scenario for proposed new FRMCS services. Due to the difference in transmitter power between base stations and mobile stations, assessment of the third scenario alone is normally considered sufficient to manage interference.

Spectrum licensed or PTS apparatus licensed base station transmitters operating in the 1805–1880 MHz band are outside the 2nd adjacent channel of FRMCS stations. The frequency separation is considered sufficient to mitigate this potential interference, so no coordination procedures have been specified in Section 3 of this RALI.

The FRMCS receiver characteristics outlined in Appendix E provide guidance to FRMCS operators that should assist in mitigating any potential interference from spectrum licensed or PTS apparatus licensed base station transmitters operating in the 1805–1880 MHz band.

If interference does occur, the ACMA encourages licensees to cooperate to find a resolution. As detailed in section 2.6 of this paper, 1800 MHz mobile stations operate on a NINP basis, therefore PTS apparatus licenced and spectrum licensees will be required to rectify any interference issues into FRMCS base station receivers caused by these devices.

2.6 DECT services in the 1880–1900 MHz band

Spectrum in the 1880–1900 MHz band is used by Australia-wide class licensed digital enhanced cordless telecommunications (DECT) services. These services are lower-adjacent to the 1900–1910 MHz band.

Interference to and from adjacent band class licensed DECT services could potentially occur in situations where DECT equipment is operated in close proximity to 1900–1910 MHz band FRMCS equipment. However, in practice, it is expected that this will generally be mitigated by technology features inherent in the DECT standard. Specifically, DECT technology incorporates a Dynamic Channel Assignment (DCA) algorithm, whereby when a DECT receiver senses interference above a threshold level on a given channel, it will select an alternative channel.

In addition, sharing studies, including ECC Report 314², concluded that the risk of interference between FRMCS and uncoordinated DECT services is low. Accordingly, there is no need for any prescribed coordination procedures between FRMCS and class licensed DECT services.

2.7 SR WBB services in the 1900–1920 MHz band

Spectrum in the 1900–1920 MHz band is used by apparatus licensed indoor WBB services in metropolitan areas. It is expected that DECT would be the primary technology used for SR WBB services. Arrangements for assigning these services are detailed in RALI FX19.

Interference to and from co-channel and adjacent-band apparatus licensed SR WBB services could potentially occur in situations where SR WBB equipment is operated in close proximity to 1900–1910 MHz band FRMCS equipment. Although the combination of DCA mentioned in section 2.6 and the indoors-only restriction on SR WBB operation in this band reduces the risk of potential interference, coordination is still required.

Apparatus-licensed SR WBB services operate on a NINP basis with regards to FRMCS services and RALI FX19 prescribes the coordination procedure for proposed apparatus licensed DECT services in the vicinity of defined railway lines.

² ECC Report 314, *Co-existence between Future Railway Mobile Communication System (FRMCS) in the frequency range 1900-1920 MHz and other applications in adjacent bands*, May 2020

3 FRMCS coordination procedures

This part provides an overview of the coordination procedure to be followed.

To perform the coordination, access to licence data for existing assignments is required. This data is available on the ACMA's [Register of Radiocommunications Licences](#) (RRL). Unless otherwise stated in this RALI, notional parameters for proposed and existing stations should only be used for coordination purposes when actual parameters are not available.

3.1 Further options if coordination is unsuccessful

If the prescribed protection requirement is not met, then spectrum access is not possible unless further steps are taken by the applicant, however the applicant may consider the following options:

- > Modifying the configuration of the proposed service to meet the protection criteria (this may include modifying the equipment to limit operation to a smaller portion of the band, or changing the locations, antenna height, proposed EIRP, etc.).
- > Negotiating an agreement with the affected or affecting service(s) regarding changes to the service(s) and/or the FRMCS.
- > Applying for a licence to conduct test transmissions to assess the actual, vs theoretical, propagation loss, which can then be used to recalculate the interference potential.

3.2 Assessing BWA interference into FRMCS

Interference from a BWA transmitter into a FRMCS receiver is to be assessed using the criteria in this section. The two interference scenarios considered in this section are:

- > Interference from a proposed BWA into a FRMCS receiver.
- > Interference from BWA transmitter licensed before 1 January 2026 into a proposed FRMCS receiver.

3.2.1 Interference from a proposed BWA transmitter into an FRMCS receiver

New BWA services may be licensed on or after 1 January 2026, within the coordination distance and frequency range specified in Table 2 on a NINP basis with regards to FRMCS base stations (see section 4.8). In addition, every point along a railway line that is within these areas is to be afforded protection from a proposed BWA transmitter in accordance with the protection criteria detailed in Appendix B. In doing so, a notional FRMCS base station (as defined in Appendix E) should be assumed to be operating at all points on a rail line.

No coordination is required for proposed BWA transmitters outside the distances and frequency ranges in Table 2.

Table 2: Distance and frequency range where BWA transmitter coordination is required.

Distance from railway line ³	BWA Frequency Range
160 km (co-channel)	1900–1920 MHz
15 km (adjacent channel)	

3.2.2 Interference from a BWA transmitter licensed before 1 January 2026 into a proposed FRMCS receiver

For a proposed FRMCS receiver, assessment of the interference risk should be based on the criteria detailed in Appendix B for BWA transmitters licensed before 1 January 2026 that are within the coordination distance and frequency range in Table 3. BWA transmitters licensed on or after 1 January 2026 are not expected to cause interference based on the coordination requirements in section 3.2.1.

Table 3: Distance and frequency range where BWA transmitter coordination is required.

Distance from the existing BWA receiver ⁴	BWA Frequency Range
160 km (co-channel)	1900–1920 MHz
15 km (adjacent channel)	

3.3 Assessing FRMCS interference into fixed links

Interference from a FRMCS into a fixed link receiver is assessed using the procedures set out in this section. Two scenarios are considered together in this section:

- > Interference from a proposed FRMCS transmitter into a licensed fixed link receiver licensed before 1 January 2026.
- > Interference from a licensed FRMCS transmitter into a proposed fixed link receiver licensed on or after 1 January 2026.

3.3.1 Interference from a proposed FRMCS transmitter into a fixed link receiver licensed before 1 January 2026

Fixed link receivers licensed before 1 January 2026 that are within the distance and frequency range described in Table 4 are to be afforded

³ Any overlap of the occupied bandwidth of the transmitter and receiver is considered co-channel

⁴ Any overlap of the occupied bandwidth of the transmitter and receiver is considered co-channel

protection (to the protection ratios detailed in Appendix C) from any proposed FRMCS base station .

Table 4: Distance and frequency range where fixed link coordination is required.

Distance from the fixed link receiver ⁵	Fixed Link Receiver Frequency Range ⁶
160 km (co-channel)	1867.5–1980 MHz
60 km (adjacent channel)	

If an FRMCS base station occupies spectrum at or within the second adjacent channel of the fixed link receiver channel, and if that FRMCS base station is located within 10 km of the fixed link receiver, coordination will be deemed to have failed and a licence will not be granted.⁷

3.3.2 Interference from an existing FRMCS transmitter into a proposed fixed link receiver licensed on or after 1 January 2026

Fixed links may be licensed on or after 1 January 2026, within the distance and frequency range described in Table 5 on a NINP basis with regards to FRMCS base stations (special condition [YYY] is to be attached to the licence for these fixed links).

Accordingly, FRMCS transmitters do not need to be coordinated against fixed links. However, for proposed fixed receivers, an assessment of the interference risk can be undertaken based on the ratios detailed in Appendix C and assuming a notional FRMCS base station transmitter (operating in accordance with the parameters set out in Appendix E) located anywhere along a railway line. No assessment is required for proposed fixed link receivers outside the distance and frequency range described in Table 5.

Table 5: Distance and frequency range where fixed link receiver coordination is required.

Distance from railway line ⁸	Fixed Link Receiver Frequency Range ⁹
160 km (co-channel)	1867.5–1980 MHz

⁵ Any overlap of the occupied bandwidth of the transmitter and receiver is considered co-channel

⁶ Include receivers with an occupied bandwidth fully or partially within this coordination range

⁷ Prospective licensees are reminded that remote stations operate on a 'no interference' basis as defined in the [Radiocommunications Licence Conditions \(Fixed Licence\) Determination](#). The 10 km minimum separation distance requirement stated here is intended to reduce the potential for FRMCS stations to cause harmful interference into a fixed link receiver while also ensuring that FRMCS licensees have a reasonable chance to service the area surrounding the proposed FRMCS base station without causing interference to fixed link receivers.

⁸ Any overlap of the occupied bandwidth of the transmitter and receiver is considered co-channel

⁹ Include receivers with an occupied bandwidth fully or partially within this coordination range

Distance from railway line ⁸	Fixed Link Receiver Frequency Range ⁹
60 km (adjacent channel)	

3.4 Assessing interference from fixed links into FRMCS

Interference from a fixed link transmitter into a FRMCS receiver is assessed using the criteria in this section, for the following two interference scenarios:

- > Interference from a proposed fixed link into an FRMCS receiver.
- > Interference from an existing fixed link transmitter (licensed before 1 January 2026) into a proposed FRMCS receiver.

3.4.1 Interference from a proposed fixed link transmitter into an FRMCS receiver

Fixed links may be licensed on or after 1 January 2026, within the distance and frequency range specified in Table 6 on a NINP basis with regards to FRMCS base stations (see section 4.8). In addition, every point along a railway line that is within the distance coordination range is to be afforded protection from a proposed fixed link transmitter in accordance with the protection criteria detailed in Appendix B. In doing so, a notional FRMCS base station receiver (as defined in Appendix E) should be assumed to be operating at all points on a rail line.

No coordination is required for proposed fixed link transmitters outside the distance and frequency range described in Table 6.

Table 6: Fixed link transmitter frequency coordination range

Distance from railway line ¹⁰	Fixed link Frequency Coordination Range ¹¹
160 km (co-channel)	1874.5–1951 MHz
60 km (adjacent channel)	

3.4.2 Interference from a fixed link transmitter licensed before 1 January 2026 into a proposed FRMCS receiver

For a proposed FRMCS receiver, assessment of the interference risk should be based on criteria detailed in Appendix B for fixed link transmitters licensed before 1 January 2026 that are within the distance and frequency range range described in Table 7. Fixed link transmitters licensed on or after 1 January 2026 are not expected to cause interference based on the coordination requirements in section 3.4.1.

¹⁰ Any overlap of the occupied bandwidth of the transmitter and receiver is considered co-channel

¹¹ Include receivers with an occupied bandwidth fully or partially within this cull range

Table 7: Distance and frequency ranges where fixed link transmitter coordination is required

Distance from existing fixed link receiver ¹²	Fixed link Frequency Coordination Range ¹³
160 km (co-channel)	1874.5–1951 MHz
60 km (adjacent channel)	

3.5 Assessing adjacent channel interference from an FRMCS transmitter into a 2 GHz band spectrum licensed or PTS receiver

2 GHz band spectrum licensed and PTS apparatus licensed receivers that are within the distance and frequency range described in Table 8 are to be afforded protection from proposed FRMCS base stations. The

[Radiocommunications Advisory Guidelines \(Managing Interference to Spectrum Licensed Receivers—2 GHz Band\) 2023](#) (the Tx RAG) contains the notional receiver performance levels for 2 GHz band spectrum licensed receivers. These receiver performance requirements can also be used for PTS receivers.

Based on the adjacent channel selectivity (ACS) and blocking requirements set out in the Tx RAG, emissions from a proposed FRMCS transmitter, within the frequency range 1900-1910 MHz, must not exceed the below levels at the antenna connector port of the receiver:

- > -43 dBm/5 MHz for receivers with an occupied bandwidth < 20 MHz (based on the blocking requirement from the Tx RAG that applies at offsets >5 MHz from the edge of the receiver channel).¹⁴
- > -52 dBm/20 MHz for receivers with an occupied bandwidth \geq 20 MHz (based on the ACS requirement from the Tx RAG that applies at offsets \leq 20 MHz from the edge of the receiver channel).¹⁵

No coordination is required for proposed FRMCS transmitters against spectrum licensed or PTS apparatus licensed receivers outside the distance and frequency range described in Table 8.

¹² Any overlap of the occupied bandwidth of the transmitter and receiver is considered co-channel

¹³ Include receivers with an occupied bandwidth fully or partially within this range

¹⁴ This absolute value is calculated using the blocking ratio of 53 dB from the Tx RAG and a sensitivity value of -96 dBm. This assumed sensitivity value is based on the reference sensitivity value from 3GPP TS38.104 (-102 dBm) + 6 dB.

¹⁵ This absolute value is calculated using the adjacent channel selectivity ratio of 37 dB from the Tx RAG and a sensitivity value of -89 dBm. This assumed sensitivity value is based on the reference sensitivity value from 3GPP TS38.104 (-95- dBm) + 6 dB.

Table 8: Distance and frequency ranges where spectrum licence/PTS receiver coordination is required

Distance from an existing 2 GHz band spectrum or PTS licensed receiver	Spectrum licensed and PTS receiver frequency range ¹⁶
70 km	1920–1930 MHz

3.6 Site engineering aspects

At shared sites, or sites in the same vicinity, several potential interference scenarios other than co-channel or adjacent channel interference may occur. These include intermodulation; transient and spurious emissions; receiver desensitisation; and, physical blocking. These scenarios are caused by non-linear and often complex processes that are, usually, not readily predicted using information contained in the ACMA's [RRL](#). Nevertheless, several "site engineering" methods can be applied to address these potential interference scenarios. These include, but are not limited to, site shielding, frequency separation, site locations, aligning transmission and reception timing and power reduction. Most of these methods mentioned above require cooperation between licensees.

In the case of co-siting with spectrum licensed devices, if the interference from the spectrum licensed device is not the result of non-compliance with the conditions of the licence, then licensees must take reasonable steps to negotiate towards measures to reduce interference to acceptable levels.

The ACMA expects that licensees (or their site managers) will work cooperatively and apply good site engineering practice to resolve problems¹⁷.

¹⁶ Include receivers with an occupied bandwidth fully or partially within this cull range

¹⁷ Refer to [RALI FX3](#) section 3.3 for further discussion.

4 Licensing

4.1 Overview of licensing

A Public Mobile Telecommunications Service Class B (PMTS B) apparatus licence for a PTS system may be issued to authorise the operation of a service that consists of 2 or more land stations. Stations that communicate with a station authorised under a PTS licence (i.e. mobile and remote stations) would be authorised by the [Radiocommunications \(Cellular Mobile Telecommunications Devices\) Class Licence 2024](#).

Under the PTS licence type, the PMTS B licensing option is to be used for FRMCS base stations in the 1900-1910 MHz frequency range.

PTS licences for FRMCS operation may only be issued for base stations that are located within 100 m of a railway line, as defined in Appendix A, and, outside the areas defined in extant [spectrum embargoes](#).

4.2 Licence conditions

The operation of radiocommunications equipment authorised by a PTS licence is subject to:

- > Conditions specified in the [Radiocommunications Act 1992](#) (the Act), including an obligation to comply with the Act.
- > Conditions specified in the [Radiocommunications Licence Conditions \(Transmitter Licence\) Determination 2025](#), [Radiocommunications Licence Conditions \(PTS Licence\) Determination 2024](#) and any other determinations made by the ACMA under section 107(1)(f) of the Act.
- > Conditions specified in this RALI.
- > Conditions specified in the licence.
- > Any further conditions imposed by the ACMA under section 111 of the Act.

If interference occurs after a licence is issued and the issue cannot be resolved between the affected parties, licensees can expect the ACMA to have regard to this RALI and relevant legislative instruments in mediating on the matter.

4.3 Access to spectrum

Proposed licensees should initially seek access to 1900–1910 MHz band spectrum through the ARA. If the accredited person, via consultation with the ARA, determines that the request cannot be accommodated within 1900–1910 MHz spectrum, then alternative spectrum will need to be considered.

There are two TDD channels with a bandwidth of 5 MHz that may be aggregated. Table 9 shows the channel centre frequencies and band limits for the 1910–1910 MHz band.

Table 9: Channel centre frequencies and band limits for FRMCS in the range 1900-1910 MHz

Ch	Centre Frequency (MHz)	Lower limit (MHz)	Upper limit (MHz)
1	902.5	1900	1905
2	907.5	1905	1910

4.4 Maximum transmitter power

The maximum permitted level of radio emission for the operation of a FRMCS transmitter must not exceed a radiated power of 65 dBm/10 MHz EIRP.

4.5 Use of spectrum by rail services and non-rail services

This RALI prioritises the use of the 1900–1910 MHz band for rail use. The ARA is to be consulted in considering the use of this spectrum for rail services. The process for consultation is described in section 4.6.

The 1900–1910 MHz band can also be used by non-rail services in accordance with the coordination rules specified in this RALI (which includes a prioritisation for rail services), as well as provisions in any other applicable RALI. The ARA does not need to be consulted for using this band for non-rail services.

4.6 Assigning Spectrum

Before a licence application is submitted to the ACMA, the ARA is to be consulted in writing by the applicant or the applicant's agent. The full details of the proposed licensee and the proposed service should be provided. The ARA will subsequently advise the applicant in writing, normally within three weeks, of the following:

1. Whether or not the applicant is an Australian Rail Industry Entity¹⁸,
2. Whether or not the proposed service is appropriate to be accommodated in 1900–1910 MHz spectrum,
3. If a rail entity is not to be accommodated, the reason(s) why.

The ARA advice should accompany the relevant licence application. The ACMA will have regard to the advice from the ARA when making a decision on licensing a service.

The contact details for the ARA are:

Australasian Railway Association

¹⁸ An Australian Rail Industry Entity means a rail user that is accredited by the Office of the National Rail Safety Regulator (ONRSR). The Rail Safety National Law requires that rail operators must apply for and be granted accreditation, before they commence undertaking railway operations. A list of the Australian Rail Industry Entities in Australia is maintained by ONRSR.

PO Box 4608
Kingston ACT 2604

Phone +61 2 6270 4501
Fax +61 2 6273 5581
Email spectrum@ara.net.au

4.7 Advisory notes

The following user selectable **advisory note FR** must be attached to all licences authorising FRMCS in the 1900–1910 MHz band:

“The shared spectrum arrangements and uncoordinated nature of class licensed radiocommunications devices in the 1880–1900 MHz band:

- a. *may result in interference from nearby class licensed radiocommunications devices that may reduce system performance; and*
- b. *the likelihood of such interference is very low due to the dynamic channel allocation techniques inherent in cordless technologies used in the band; and*
- c. *protection from such interference cannot be afforded.”*

4.8 Special conditions

The following user selectable **special condition [XXX]** is to be attached to all PTS licences in the 1900-1910 MHz frequency range:

Special Condition [XXX]: *‘The licence only authorises the operation of radiocommunications devices for the purpose of the provision of rail safety and control communications.’*

The following user selectable **special condition [YYY]** is to be attached to all PTS licences in the 1900-1910 MHz frequency range, and all new point-to-point and point-to-multipoint licences issued in the range 1900-1920 MHz for stations that are located within 150km (co-channel) or 30 km (adjacent-channel) from a railway line in Appendix A:

Special Condition [YYY]: *‘No interference shall be caused to, and no protection from interference shall be afforded from, stations operated under a PTS licence in the 1900-1910 MHz frequency range.*

4.9 Spectrum access records

Technical details relating to the FRMCS base station, including transmit power, antenna, location, antenna height, antenna type/orientation and transmit/receive frequencies must be recorded. Note that:

- > Where sectored antennas are used, details of the antenna model, tilt, polarisation, and azimuth¹⁹ must be recorded for each sector.

¹⁹ Where the sectored antennas are combined to achieve an effectively omni-directional coverage (on a single channel) it is not necessary to specify the azimuth of each sector antenna.

- > Where steerable beam antennas are used, details of the highest possible gain must be recorded.

5 Exceptions

Exceptions to the requirements of this RALI for prospective assignments require case-by-case consideration by the Manager, Spectrum Planning Section.

A request for exemption from the requirements of this RALI would need to be accompanied by evidence to support the request.

All requests for exemptions should be submitted to freqplan@acma.gov.au.

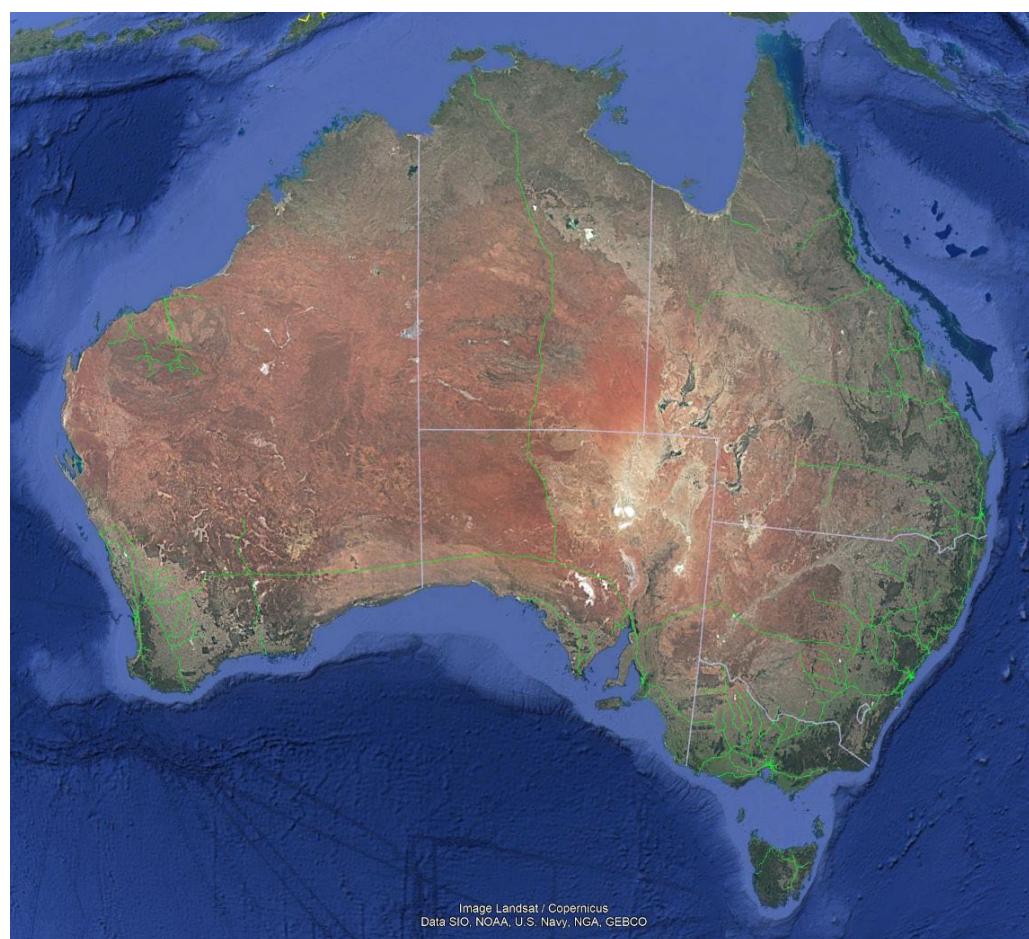
6 RALI Authorisation

[not approved] xx/xx/2025

Manager
Spectrum Planning Section
Spectrum Planning and Engineering Branch

Communications Infrastructure Division
Australian Communications and Media Authority

Glossary of terms


ACMA	Australian Communications and Media Authority
BWA	Broadband Wireless Access
DECT	Digital Enhanced Cordless Telecommunications (previously known as Digital European Cordless Telecommunications)
EIRP	Equivalent Isotropically Radiated Power
FDD	Frequency Division Duplex
ITU	International Telecommunications Union
PTS	Public Telecommunications Service
RALI	Radiocommunications Assignment and Licensing Instruction
RRL	Register of Radiocommunication Licences
Rx	Receiver
TDD	Time Division Duplex
Tx	Transmitter

Appendix A: Railway lines for FRMCS in the 1900–1910 MHz band

In this RALI, references to a railway line for coordination purposes means a railway line can be obtained from the Digital Atlas Australia website: <https://digital.atlas.gov.au/datasets/digitalatlas::railway-lines/about>, also see Figure A1.

The area available for apparatus licensed FRMCS in the 1900–1910 MHz band is defined as being anywhere within 100 m of a railway line described in the above link.

Figure A1: Railway lines in Australia

Appendix B: Protection criteria for FRMCS receivers in the 1900–1910 MHz band

For the purposes of this appendix, adjacent channels are defined with respect to the device subject to interference (“victim”) receiver’s channel bandwidth.

For example, in the case of an interference assessment for a fixed link transmitter using a 14 MHz channel into a FRMCS receiver using a 5 MHz channel, the first adjacent channel refers to the 5 MHz channels either side of the victim receiver’s occupied channel. The same logic is used to determine the 2nd adjacent channel. For cases where the occupied bandwidth of the transmitter and receiver fully or partially overlap, then co-channel protection requirements are to be adhered to.

B.1 Protection of FRMCS from a non-FRMCS transmitter

Table B1 defines protection criteria for FRMCS receivers from interfering non-FRMCS transmitter. The requirements in Table B1 are to be met at the input of the FRMCS receiver.

Table B1: FRMCS protection criteria from non-FRMCS transmitters.

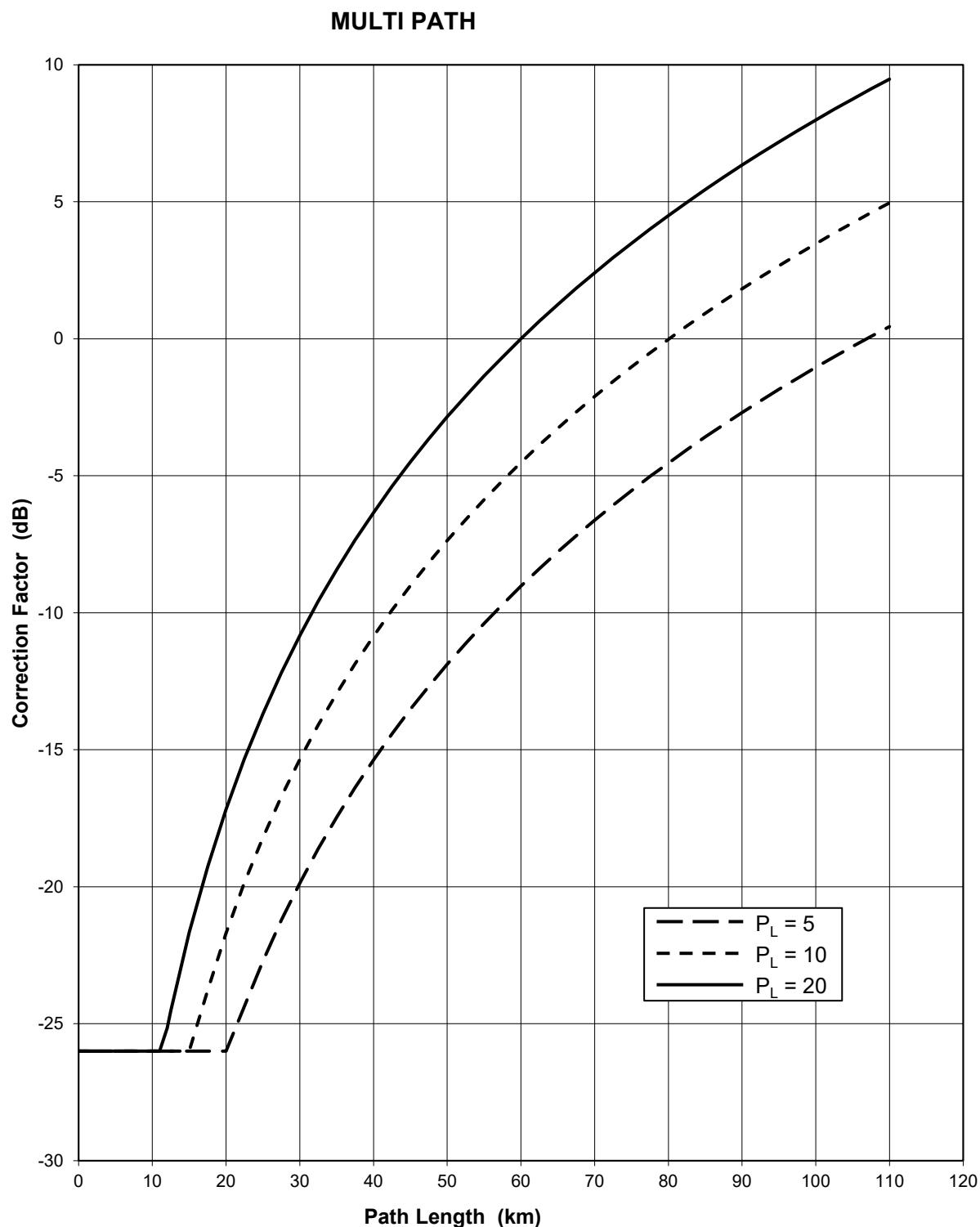
Frequency offset	PROTECTION CRITERIA Digital interferer Tx into digital victim Rx
Co-channel	–100 (dBm per 5 MHz channel) –97 (dBm per 10 MHz channel)
1 st adjacent channel	–42 (dBm per 5 MHz channel) –39 (dBm per 10 MHz channel)
2 nd adjacent channel	—

Appendix C: Protection criteria for fixed point-to-point receivers in the 1.8 and 2.1 GHz bands

For the purposes of this appendix, adjacent channels are defined with respect to a victim receiver's channel size. For example, in the case of an interference assessment of a FRMCS transmitter using a 5 MHz channel into a fixed link receiver using a 14 MHz channel, the first adjacent channel refers to the 14 MHz channels either side of the victim receiver's occupied channel. The same logic is used to determine interference into the 2nd and 3rd adjacent channels. The following protection ratios are to be used when assessing interference to fixed link point receivers in the 1.8 and 2.1 GHz bands.

Table C1 contains protection ratios for 1.8 or 2.1 GHz fixed link receivers from interfering FRMCS transmitters. The requirements in Table C1 are to be met at the input of the fixed link receiver.

Table C1: Fixed link protection ratios from FRMCS transmitters.


Frequency offset	REQUIRED PROTECTION RATIO (dB) Digital interferer Tx into digital victim Rx
Co-channel	60
1 st adjacent channel	30
2 nd adjacent channel	0
3 rd adjacent channel	—

The protection ratios in Table C1 are based on a 60 km path length and P_L (Percentage of time that the average refractivity gradient in the lowest 100 m of the atmosphere is less than or equal to -100 N units/km) value of 20. For other path length and P_L values refer to the correction factor graph contained in Appendix B.

Separate protection ratios for analogue victim receivers have not been defined. The above-mentioned protection ratios for digital services should be applied in all cases.

Provisionally, protection ratio values quoted here are identical to those included in [RALI FX3](#) for comparable cases. However, assigners should be advised that in future these values (and the comparable values in [RALI FX3](#)) may be revised downward to increase the density of spectrum usage in these bands.

Appendix D: Protection ratio correction factors

P_L : Percentage of time that the average refractivity gradient in the lowest 100 m of the atmosphere is less than or equal to -100 N units/km .

For further details refer to Annex A to Appendix 1 of [RALI FX3](#).

Appendix E: FRMCS service model

E.1 Equipment types

The equipment types and technologies considered in developing this RALI were based on the following standard:

- > 3GPP TS 38.104, “Technical Specification Group Radio Access Network; NR; Base Station (BS) radio transmission and reception”

Additional studies considered in developing this RALI were:

- > ETSI TR 103 865, “*Rail Telecommunications (RT); Future Railway Mobile Communication System (FRMCS); Radio performance aspects*”
- > ECC Report 314, “*Co-existence between Future Railway Mobile Communication System (FRMCS) in the frequency range 1900-1920 MHz and other applications in adjacent bands*”
- > ECC Report 318, “*Compatibility between RMR and MFCN in the 900 MHz range, the 1900-1920 MHz band and the 2290-2300 MHz band*”

E.2 Deployment model and general equipment characteristics

Deployment model values were chosen after considering typical FRMCS parameter values. Tables E1 and E2 show deployment model parameter values for base stations and remote stations respectively.

Table E1: transmitter deployment parameters.

Base station Parameter	Deployment model value	Unit
Maximum in band EIRP	65	dBm/10 MHz
Antenna Gain	18	dBi
Feeder losses	4	dB
Tx Bandwidth	10	MHz
Antenna height	30	m
Adaptive transmit power control	enabled	—
Maximum out of band EIRP: 1920 – 1980 MHz	-40	dBm/10 MHz

Table E2: FRMCS mobile station deployment parameters.

Mobile station Parameter	Deployment model value	Unit
Cab radio		
Maximum in band total radiated power	31	dBm/10 MHz
Tx Bandwidth	10	MHz
Antenna height	5	m
Adaptive transmit power control	enabled	—
Maximum out of band EIRP: 1920 – 1925 MHz	-25	dBm/10 MHz
Maximum out of band EIRP: 1925 – 1980 MHz	-30	dBm/10 MHz
Maximum out of band EIRP: 1880 – 1920 MHz	-2	dBm/10 MHz
Railway Mobile Radio Terminal		
Maximum in band EIRP	23	dBm/10 MHz

E.3 Emission masks

In addition to the parameters shown in the above tables, emission characteristics must conform to the 3GPP TS 38.104 standard for the n101 band, paying particular attention to co-existence requirements.